THE 'WHY'S AND 'HOW'S OF

Rajarshi Mitra

WHAT EXACTLY IS MONERO

A CURRENCY SYSTEM

SECURE

PRIVATE

UNTRACEABLE

NO.1 FEATURE

Is it bad to want privacy? Is being "open" the way to go?

Do only criminals need privacy?

BITCOIN vs MONERO

	BITCOIN (BTC)	MONERO (XMR)
CONCEPT	Digital money	Untraceable digital money
TRANSACTION DETAILS	Publicly viewable	Concealed from public
TRANSACTION EXAMPLE	Alice sent 1 BTC to Bob	? sent? XMR to?
MARKET CAP	~ \$228 billion	~ \$5.7 billion
BLOCK TIME	~ 10 minutes	~ 2 minutes

THE ELECTRONIC CASH TRIANGLE ACCORDING TO THE MONERO TEAM

The Case for Bitcoin

Electronic

Decentralized

Privacy

- > Bitcoin is on an open ledger, everything is open to the public.
- > While it is electronic and decentralized, it fails when it comes to privacy.

THE 3 PILLARS OF MONERO

PILLAR #1

RING SIGNATURES PILLAR #2

STEALTH ADDRESS

PILLAR #3

CONFIDENTIAL TRANSACTIONS

PILLAR #1

WHAT EXACTLY ARE RING SIGNATURES?

- > She first chooses a **ring size**.
- > She signs the **outputs** with her **private spend key** and sends it to blockchain.

Suppose Alice chooses a ring size of 5

4 decoy outputs and her own output

STEALTH ADDRESS

Q: What is transaction unlinkability?

A: If Alice is sending XMR to Bob, only Alice should know Bob's identity.

How does Monero ensure Bob's privacy?

Alice uses Bob's public view key and public spend key to generate a random one-time public key.

Random one-time public key

- > The one-time public key generates a one-time public address called "stealth address".
- > Alice sends the Monero to the stealth address.

- ➤ Bob's private spend key now traces the blockchain to look for that transaction.
- > Upon finding it, Bob generates a private key corresponding to the one-time public key and retrieves the Monero.

PILLAR #3

CONFIDENTIAL TRANSACTIONS

- > We have seen how the sender and receiver can remain anonymous.
- > How about making the transactions anonymous as well?
- > This is where **Ring CT** comes in.

Before Ring CT Implementation

- > Each part then gets its own ring signature and then gets added to the blockchain.
- > However this made the transactions visible to everyone.

After Ring CT Implementation

- > Ring CT hides every transaction in the blockchain.
- This means that every amount doesn't need to be broken down into known denominations.
- ➤ Any output can now link with any other output to create ring signatures!

Meet the MONERO Team

MONERO's biggest use case — Privacy Coin

Is Monero the ultimate "Crime Coin"?

The Future

- In an increasingly transparent world, Monero's opaqueness is definitely an alluring property.
- ➤ It is one of the few non-bitcoin based coins which can make it truly big.
- Hardware wallets need to implement the option of storing Monero.
- > Super exciting times ahead!

Thank You!

You can check out my work here:

- coinlive.io
- https://blockgeeks.com/guides/
- https://medium.com/@rajarshimitra

I hope you gained value from this presentation.